On Povzner–wienholtz-type Self-adjointness Results for Matrix-valued Sturm–liouville Operators
نویسنده
چکیده
We derive Povzner–Wienholtz-type self-adjointness results form× m matrix-valued Sturm–Liouville operators T = R [
منابع مشابه
Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds
We prove essential self-adjointness for semi-bounded below magnetic Schrödinger operators on complete Riemannian manifolds with a given positive smooth measure which is fixed independently of the metric. This is an extension of the Povzner–Wienholtz theorem. The proof uses the scheme of Wienholtz but requires a refined invariant integration by parts technique, as well as a use of a family of cu...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملSturm–liouville Operators with Measure-valued Coefficients
We give a comprehensive treatment of Sturm–Liouville operators whose coefficients are measures including a full discussion of self-adjoint extensions and boundary conditions, resolvents, and Weyl–Titchmarsh–Kodaira theory. We avoid previous technical restrictions and, at the same time, extend all results to a larger class of operators. Our operators include classical Sturm– Liouville operators,...
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کامل